REACTION OF 3,3,3-TRIFLUOROPROPENE WITH BENZENE OVER ${\rm Al}_2{\rm O}_3 \ {\rm TREATED} \ {\rm with} \ {\rm CF}_3{\rm Cl}$

Hisanori TAKUSARI and Susumu OKAZAKI*

Department of Industrial Chemistry, Faculty of Engineering,

Ibaraki University, Nakanarusawa-cho, Hitachi 316

The reaction between 3,3,3-trifluoropropene and benzene in a vapor phase was carried out over various ${\rm Al}_2{\rm O}_3$. Trifluoropropylbenzene was obtained selectively when ${\rm CF}_3{\rm Cl-treated}$ ${\rm Al}_2{\rm O}_3$ was used as a catalyst.

Since trifluoromethyl group has a unique character, CF₃-containing aromatic compounds are expected to show a high dielectric constant and lipophilicity.^{1,2)} As 3,3,3-trifluoropropene(TFP) has been industrially produced as a raw material in the production of fluorine-containing silicone, it is readily available and is relatively inexpensive. Hence, it is favorable to introduce CF₃ group to aromatic compound by using TFP as an alkylating agent. However, due to the extremely strong electron withdrawing effect of CF₃ group, TFP is not active so much as a reagent for the acid catalyzed alkylation. In fact, benzene was trifluoropropylated only in the presense of Nafion-H, BF₃, or HBF₄, which are known as strong acid catalysts, under a relatively high pressure in an autoclave.²⁾ In the industrial production, it is preffered to carry out the alkylation over the solid catalysts, which can be easily regenerated and are easy to handle.

We reported that ${\rm Al}_2{\rm O}_3$ which was partially fluorinated with ${\rm CF}_3{\rm Cl}$ showed a high activity for the acid catalyzed reactions, such as ${\rm MTG}^3$) and isomerization of paraffins. Therefore, we examined the catalytic activity of ${\rm Al}_2{\rm O}_3$ treated with ${\rm CF}_3{\rm Cl}$ for the vapor phase reaction of TFP with benzene.

Aluminum oxide was prepared by a hydrolysis of aluminum isopropoxide, Al(NO $_3$) $_3$, or Al $_2$ (SO $_4$) $_3$ (Wako Chemical Co.); these samples were washed, dried, and finally calcined at 600 °C for 3 h, and named Al $_2$ O $_3$ -A, Al $_2$ O $_3$ -N, Al $_2$ O $_3$ -S, respectively. A

commercial product, Albes FF(Showa Tansan Co.) was also used. The HF-treated ${\rm Al}_2{\rm O}_3$ which was prepared by a wet impregnation method using aqueous HF solution, was used for comparison. For the partial fluorination of ${\rm Al}_2{\rm O}_3$, an ${\rm Al}_2{\rm O}_3$ sample (0.3 g) evacuated at 420 °C for 30 min was treated with CF $_3$ Cl(60 Torr, 1 Torr= 133.3 Pa) at 420 °C for 30 min in a closed recirculation reactor(volume: 0.55 l). After the treatment and further evacuation at 420 °C for 30 min, a mixture of benzene and TFP was introduced into the reactor and reacted at 100 °C for 30 min.

The product distributions are shown in Table 1, in which bis-substituted compounds were omitted, because their amounts were negligibly small. The catalytic activities of untreated ${\rm Al}_2{\rm O}_3$ were low; furthermore the main product was not 3,3,3-trifluoropropylbenzene(TFPB) but ${\rm C}_6{\rm H}_5{\rm CH}_2{\rm CH}={\rm CF}_2$, except for ${\rm Al}_2{\rm O}_3{\rm -S}$. The fact that ${\rm Al}_2{\rm O}_3$ containing ${\rm SO}_4^{\ 2^-}({\rm Al}_2{\rm O}_3{\rm -S})$ showed higher selectivity for the formation of TFPB, was possibly due to the high acidity caused by ${\rm SO}_4^{\ 2^-}$ which remained in the catalyst

The catalytic activity of ${\rm Al}_2{\rm O}_3$ was somewhat increased by a usual fluorination with aqueous HF solution; it increased with an increase in a concentration of aqueous HF solution used for the treatment. The HF-treated ${\rm Al}_2{\rm O}_3$, however, did not remarkably promote the formation of TFPB; moreover, it still produced undesirable product, ${\rm C}_6{\rm H}_5{\rm CH}_2{\rm CH}={\rm CF}_2$.

Table 1. Catalytic activities of various Al₂O₂

		Composition (m	<u>2_3</u> ol%)
Sample	^С 6 ^Н 6	C ₆ ^H ₅ ^{CH} ₂ ^{CH} ₂ ^{CF} ₃	C ₆ H ₅ CH ₂ CH=CF ₂
Al ₂ O ₃ -N	97.8	0.2	2.0
-A	97.7	0.2	2.1
- S	97.7	1.8	0.5
Albes FF	97.7	0.2	2.1
A1 ₂ O ₃ -N-1.0 HF	94.1	3.7	2.2
-5.0 HF	92.6	6.5	0.9
-CC1 ₄	99.1	0.5	0.4
-CFC13	80.3	19.7	0
-CF ₂ Cl ₂	78.7	21.3	0
-CF ₃ C1	75.2	24.8	0
-CF ₄	91.2	5.3	3.5
Al ₂ O ₃ -A-CF ₃ Cl	73.3	26.7	0
-s-cF ₃ Cl	83.0	17.0	0
Albes FF-CF ₃ Cl	76.7	23.3	0
Alf ₃	99.2	0.5	0.3

The treatment with $\mathrm{CF_3Cl}$ enhanced the catalytic activities of various $\mathrm{Al_2O_3}$ to a large extent; the selectivity for the formation of TFPB was also improved, and no $\mathrm{C_6H_5CH_2CH=CF_2}$ was produced. Although untreated $\mathrm{Al_2O_3}$ -S showed a slightly higher activity than those of other $\mathrm{Al_2O_3}$ samples, the $\mathrm{CF_3Cl-treated}$ $\mathrm{Al_2O_3}$ -S exhibited relatively low activity as compared with other $\mathrm{CF_3Cl-treated}$ $\mathrm{Al_2O_3}$. It is suggested that $\mathrm{SO_4^{2-}}$ contained in $\mathrm{Al_2O_3}$ might prevent the formation of active sites on the fluorinated $\mathrm{Al_2O_3}$.

The catalytic activity of ${\rm Al}_2{\rm O}_3$ treated with CFCl $_3$ or ${\rm CF}_2{\rm Cl}_2$ was comparable to that of ${\rm Al}_2{\rm O}_3$ treated with CF $_3{\rm Cl}$; on the other hand, ${\rm Al}_2{\rm O}_3$ treated with CF $_4$ showed less activity than those of ${\rm Al}_2{\rm O}_3$ treated with Cl-containing flon. As CF $_4$ was a stable compound, CF $_4$ -treated ${\rm Al}_2{\rm O}_3$ was not considered to be sufficiently fluorinated. The catalytic activity of ${\rm Al}_2{\rm O}_3$ was not enhanced by the treatment with CCl $_4$. Therefore, it seems that the high catalytic activity was due to the F atom introduced by the fluorination with flon.

Table 2 shows the surface compositions of various ${\rm Al}_2{\rm O}_3$ samples measured by XPS. The fluorine content of the HF-treated ${\rm Al}_2{\rm O}_3$ increased with an increase in a concentration of aqueous HF solution used for the treatment. In the ${\rm Al}_2{\rm O}_3$ treated with 5.0 wt% of aqueous HF solution, however, a weak peak ascribed to crystalline ${\rm Al}_2{\rm O}_3$ was observed by XRD analysis.

The F content of $\mathrm{CF_3Cl}$ -treated $\mathrm{Al_2O_3}$ was much higher than that of HF-treated $\mathrm{Al_2O_3}$, nevertheless, the formations of crystalline $\mathrm{AlF_1.96^{OH}_{1.04}}$ were scarecely detected by XRD analysis. The absence of crystalline $\mathrm{AlF_3}$ was also confirmed by the result of XPS measurement; i.e. the peak position of $\mathrm{Al_{2p}}$ for the $\mathrm{CF_3Cl}$ -treated $\mathrm{Al_2O_3}$ was very close to that for untreated $\mathrm{Al_2O_3}$, and far from that for crystalline $\mathrm{AlF_3}$.

Table 2. Surface compositions of various Al_2O_3

Sample		Composition (atomic%)			
	Al	0	S	F	Cl
Al ₂ O ₃ -A	35,6	64.4	0	0	0
-CF ₃ Cl	32.2	36.9	0	30.7	0.2
Al ₂ 0 ₃ -S	28.6	66.7	4.7	0	0
-CF ₃ Cl	28.6	34.9	3,9	32.2	0.4
Albes FF	37.0	63.0	0	0	0
-CF ₃ Cl	32.9	36.8	0	29.5	0.8
A1 ₂ O ₃ -N-1.0 HF	34.6	57.0	0	8.4	0
-5.0 HF	36.6	49.3	0	14.1	0

	Surface area ^{a)}	NH ₃ amount (at 400 °C)		
Sample	(m ² /g)	(mmol/g)	(mol/m ²)	
Al ₂ O ₃ -N	192.8	0.29	1.8	
-1.0 HF	172.3	0.42	2.4	
-5.0 HF	110.5	0.33	3.0	
-CF ₃ C1	159.3	0.58	3.7	
Al ₂ O ₃ -S	137.3	-	-	
-CF ₃ C1	40.3	-	-	
Al ₂ O ₃ -A	190.9	0.35	1.8	
-CF ₃ Cl	139.1	0.59	4.2	
Albes FF	223.2	0.41	1.8	
-CF ₃ C1	153.7	0.56	3.6	

Table 3. Specific surface area and surface acidity

As being shown in Table 3, the order of increasing amount of NH_3 adsorbed on the various samples at 400 °C is as follows;

 $\label{eq:Al2O3-CF3Cl} \text{Al}_2\text{O}_3-5.0 \text{ HF} > \text{Al}_2\text{O}_3-1.0 \text{ HF} > \text{Al}_2\text{O}_3$ This fact suggests that fairly strong acid sites were formed in abundance on the CF_3Cl-treated Al2O3; these strong acid sites may be responsible for the high catalytic activity of the CF_3Cl-treated Al2O3.

It was also observed that after the reaction, untreated ${\rm Al}_2{\rm O}_3$ contained ca. 6% of F atom by means of the XPS measurement. It seems that ${\rm Al}_2{\rm O}_3$ incorporated F atom from TFP to form ${\rm AlF}_3$ which is thermodynamically more stable than ${\rm Al}_2{\rm O}_3$. As the result of elimination of F atom as HF from TFPB molecule, ${\rm C}_6{\rm H}_5{\rm CH}_2{\rm CH}={\rm CF}_2$ might be preferentially formed when the fresh, or untreated ${\rm Al}_2{\rm O}_3$ samples such as ${\rm Al}_2{\rm O}_3-{\rm N}$ and ${\rm Al}_2{\rm O}_3-{\rm A}$ were present as catalysts (as being shown in Table 1).

References

- 1) N. Ishikawa and Y. Kobayashi, "Fusso no Kagobutsu", Kodansha(1979), p.202.
- 2) Y. Kobayashi, I. Kumadaki, T. Nagai, M. Takahashi, and T. Yamauchi, The 9 th Symposium on Organic Reactions and Syntheses Program, Novemver 1982, 2-08.
- 3) A. Kurosaki and S. Okazaki, Bull. Chem. Soc. Jpn., 56, 1279(1983).
- 4) A. Kurosaki and S. Okazaki, Chem. Lett., 1983, 1741.

(Received March 12,1984)

a) Determined by applying the BET method to the adsorption isotherm of N $_{\rm 2}$ at -196 $^{\rm o}{\rm C}_{\rm \cdot}$